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Cellular organelles are no longer conceived as unconnected 
structures with isolated functions, but as dynamic and inte-
grated compartments. The best-characterized membrane 

contact sites bridge the endoplasmic reticulum (ER) and mitochon-
dria1. The ER—the largest organelle in eukaryotic cells—controls 
protein folding, lipid synthesis and calcium storage. The folding 
capacity of the ER is constantly challenged by physiological demands 
and disease states. To sustain proteostasis, cells engage the unfolded 
protein response (UPR)2, a signalling pathway that enforces adap-
tive programs to adjust the secretory capacity, whereas uncompen-

sated ER stress results in apoptosis3. Abnormal levels of ER stress are 
emerging as a driving factor for a wide variety of human diseases 
including diabetes, neurodegeneration and cancer4.

The sites of physical communication between the ER and mito-
chondria are defined as mitochondria-associated membranes 
(MAMs), which form dynamic microdomains that are maintained 
by specialized tether and spacer proteins5. MAMs facilitate the 
transfer of calcium, phospholipids and metabolites between the 
two organelles1. The repertoire of signalling and metabolic pro-
teins located at MAMs is determined by the local expression of 
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chaperone proteins, such as the sigma-1 receptor (Sig-1R), among 
other components6,7. MAMs are central for the biogenesis of 
autophagosomes, as they determine the position of mitochondrial 
fission as well as influence the abundance and dynamics of organ-
elles8. MAMs generate microdomains of localized calcium spikes 
released from the ER through inositol-1,4,5-trisphosphate (InsP3) 
receptors (InsP3Rs), thus stimulating calcium uptake by mitochon-
dria9. Voltage-dependent anion channels (VDACs) are located at 
the outer mitochondrial membrane and mediate the internalization 
of calcium to reach a concentration that is suitable for transfer into 
the matrix9,10. Importantly, calcium uptake adjusts cellular metabo-
lism as a cofactor of mitochondrial dehydrogenases during the pro-
duction of NADH, and by increasing energy production through 
the activation of the tricarboxylic acid cycle (TCA)10. Conversely, 
abnormal fluctuations in mitochondrial calcium concentrations can 
trigger cell death11.

The maintenance of stable contact sites between ER and 
mitochondria provides a platform for bidirectional crosstalk. 
Accumulating evidence suggests that disruption of MAMs per-
turbs ER physiology, leading to ER stress12–15. Interestingly, the UPR 
transducer PERK is enriched at MAMs16 where it facilitates the teth-
ering of the ER to mitochondria and sensitizes cells to apoptosis16,17. 
PERK signalling might also protect mitochondrial function under 
ER stress, possibly as an early adaptive mechanism18. IRE1α initiates 
the most conserved UPR signalling branch, controlling ER proteos-
tasis and cell survival through distinct mechanisms4. IRE1α is a ser-
ine/threonine protein kinase and endoribonuclease that catalyses 
the unconventional processing of the mRNA that encodes X-Box 
binding protein-1 (XBP1), generating an active transcription fac-
tor termed XBP1s19. IRE1α also mediates the crosstalk with other 
alarm pathways by binding a series of adapter proteins3. A fraction 
of IRE1α is also located at MAMs, where stabilization by Sig-1R 
may enhance IRE1α signalling20,21.

Here we investigated the contribution of IRE1α to the princi-
pal biological processes governed by the juxtaposition of ER and 
mitochondria. We identified a fundamental role for IRE1α in con-
trolling the biology of MAMs, with broad implications for cellular 
metabolism. At the molecular level, the presence of IRE1α at MAMs 
determined the availability of InsP3R, thus favouring calcium trans-
fer to instigate mitochondrial respiration and ATP production. We 
provide mechanistic evidence that dissociates the canonical func-
tion of IRE1α as an UPR signal transducer from its structural role 
at MAMs as a scaffold. Together, our results indicate that IRE1α 
expression at MAMs adjusts cellular bioenergetics by fine-tuning 
the communication between the ER and mitochondria.

Results
Localization of IRE1α at MAMs and its impact on mitochondrial 
calcium transfer. We performed density gradient centrifugations to 
collect cellular fractions enriched in mitochondria, ER and MAMs22 
to validate the presence of UPR signal transducers at MAMs. We 
confirmed an accumulation of IRE1α and PERK in MAM fractions 
from mouse embryonic fibroblasts (MEFs; Fig. 1a) and mouse livers 
(Fig. 1b).

To assess MAM function, we simultaneously monitored the 
release of ER calcium into the cytosol using Fura-2AM (Fura2) 
and mitochondrial calcium transfer using Rhodamine2N-AM 
(Rhod2) after the stimulation of cells with ATP to elicit InsP3R-
mediated responses. We used IRE1α knockout (KO) cells that were 
reconstituted with an haematoagglutinin (HA)-tagged form of 
IRE1α (IRE1α–HA), a strategy that fully restored UPR signalling23 
(Supplementary Fig. 1a). We also generated two sets of IRE1α null 
cells using CRISPR–Cas9 technology (Supplementary Fig. 1b,c). In 
all of these cellular systems, the ATP-dependent increase in cyto-
solic and mitochondrial calcium was reduced by ablating IRE1α 
expression (Fig. 1c–f, Supplementary Fig. 1d,e).

We then determined whether the alterations in calcium signal-
ling observed in IRE1α-deficient cells were due to changes in the 
expression of calcium-handling proteins present in MAMs, includ-
ing InsP3R1, InsP3R3, SERCA2b, MCU and VDAC1. We did not 
observe any significant changes in the basal expression of these pro-
teins in IRE1α null cells (Fig. 1g, Supplementary Fig. 1f,g). Only a 
slight increase in MCU expression was detected in IRE1α CRISPR 
KO cells (Supplementary Fig. 1g). To increase InsP3 inside the cell, 
we stimulated phospholipase C (PLC) using the chemical activator 
M3M3FBS24, and observed decreased calcium release and mito-
chondrial uptake in IRE1α-deficient cells (Supplementary Fig. 1h,i). 
Similar results were obtained using a mitochondrial-targeted cal-
cium indicator (CEPIA2mt25; Fig. 1h). Correlation analysis between 
ER calcium release and mitochondrial calcium uptake data sug-
gested independent effects of IRE1α deficiency on both parameters 
(Fig. 1i, Supplementary Fig. 1j).

The alterations in ER calcium release caused by IRE1α defi-
ciency can be explained by changes in the activity of InsP3R and/
or altered steady-state luminal calcium content (which alters the 
calcium gradient)26,27. We investigated the effects of IRE1α expres-
sion on the activity of InsP3R using a cell-free system. We stimulated 
permeabilized cells with InsP3 after loading them with the calcium 
probe Mag-Fluo4. We observed a significant reduction in InsP3R-
mediated responses in IRE1α KO cells (Fig. 1j). We then performed 
measurements with radiolabelled calcium in permeabilized cells 
that were loaded with 45Ca2+ to study different aspects of calcium 
homeostasis. Analysis of ER 45Ca2+ loading indicated no signifi-
cant differences between IRE1α null and IRE1α reconstituted cells 
(Supplementary Fig. 1k), suggesting unaltered steady-state luminal 
calcium levels. However, a slight enhancement in the kinetics of 
ER 45Ca2+ loading (due to SERCA activity) was observed in IRE1α-
deficient cells (Supplementary Fig. 1l), whereas passive leakage of 
calcium was unaltered (Supplementary Fig. 1m). Furthermore, 
cytosolic calcium levels were normal in IRE1α KO cells at resting 
conditions (Supplementary Fig. 1n). Taken together, these results 
uncovered a major role of IRE1α in the transfer of calcium into 
mitochondria.

IRE1α regulates mitochondrial bioenergetics and physiology. 
As IRE1α influences mitochondrial calcium uptake, we assessed 
different parameters related to mitochondrial physiology and bio-
energetics. Reduced mitochondrial membrane potential measured 
using tetramethylrhodamine methyl ester perchlorate (TMRM) was 
observed under normal cell culture conditions in IRE1α-deficient 
cells (Fig. 2a,b), correlating with a drop in ATP production (Fig. 
2c,d, Supplementary Fig. 2a). To determine the site responsible for 
the failure in ATP synthesis, we used an ATP fluorescence reso-
nance energy transfer (FRET)-based fusion protein that was tagged 
to the mitochondrial matrix or the cytosol28. A selective decrease 
in the mitochondrial pool of ATP was observed in IRE1α-deficient 
cells (Fig. 2e,f, Supplementary Fig. 2b).

We then monitored oxygen consumption using a Seahorse 
Analyzer. We observed a reduction in basal respiration, ATP cou-
pling and maximal oxygen consumption rate in IRE1α-deficient 
cells (Fig. 2g,h). AMPK is a low-energy sensor that, once activated, 
phosphorylates several targets, which results in an increase in ATP 
generation and a reduction in ATP consumption29. Increased AMPK 
phosphorylation was observed in IRE1α-deficient cells under rest-
ing conditions (Fig. 2i, Supplementary Fig. 2c). Reduced calcium 
uptake into mitochondria is also associated with the activation of 
compensatory catabolic processes, such as autophagy, downstream 
of AMPK30. Targeting IRE1α expression increased basal LC3-II lev-
els (Fig. 2j) and autophagic flux, which was measured by monitoring 
the distribution of LC3-II under nutrient starvation (Supplementary 
Fig. 2d). Consistent with this, inhibition of autophagy by blocking 
lysosomal function with chloroquine resulted in a further reduction 
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Fig. 1 | IRE1α is located at MAMs and enhances mitochondrial calcium uptake. a, IRE1α KO cells reconstituted with IRE1α–HA were processed to obtain 
purified MAM fractions followed by western blot analysis of indicated proteins (n = 3 independent experiments). H, homogenate; C, cytosol; Cr, crude 
mitochondria; M, MAMs; P, pure mitochondria; Cyt c, cytochrome c; CNX, calnexin. b, Liver extracts were processed to obtain subcellular fractions 
enriched for MAMs and analysed by western blot (n = 9 independent experiments). c,d, IRE1α KO cells reconstituted with IRE1α–HA or mock control were 
simultaneously imaged for calcium signals in the cytosol (Fura2; c) and mitochondria with Rhod2 (d). Left, the Fura2 ratio (c) and mean Rhod2 intensity 
(d) of normalized data before and after ATP is added; arrow, 100 µM ATP. Right, the data for the maximum peak are shown (total cells analysed: mock, 
n = 116 cells; IRE1α–HA, n = 138 cells). e,f, Similar experiments for Fura2 (e) and Rhod2 (f) were performed in CRISPR control and IRE1α KO cells (total 
cells analysed: control, n = 129 cells; IRE1α KO, n = 117 cells). WT, wild type. g, Indicated cell lines were processed for western blot analyses to monitor the 
levels of indicated proteins (n = 4 independent experiments). h, IRE1α null and control cells were imaged for calcium levels in mitochondria by transiently 
expressing CEPIA2mt mitochondrial calcium probe (left) after addition of 50 µM M3M3FBS (arrow), (Mito red; Mitochondrila Ds-Cherry control). Scale 
bars, 10 µm. Right, maximum CEPIA2mt intensity for every cell analysed (mock, n = 14 cells; IRE1α–HA, n = 14 cells). i, Maximum peaks from Fura2/Rhod2 
measurements from samples described in c and d were calculated using nonlinear regression analyses to determine the correlation constant (K) and s.e.m. 
(mock, K = 0.199 ± 0.009; IRE1α–HA, K = 0.231 ± 0.01). j, Cells were imaged for calcium levels in the ER after loading with Mag-Fluo4 in permeabilized 
cells followed by stimulation with InsP3R (n = 5 independent experiments; left). Middle, percentage activity for InsP3R for each condition normalized to 
maximum release (ionomycin). Right, the first derivative was calculated. Data in c–f,h–j are mean ± s.e.m. Statistical differences were detected using two-
tailed unpaired Student’s t-tests except for j; right, which was one-tailed. Source data for statistical analyses are provided in Supplementary Table 6.
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in ATP levels in IRE1α-deficient cells (Supplementary Fig. 2e), indi-
cating that these cells were suffering from metabolic stress.

ER–mitochondrial contact sites are known to determine the point 
of mitochondrial fission31, and fused mitochondria are proposed to 
have a higher metabolic activity32. Transmission electron micros-
copy (TEM) indicated that IRE1α null cells contained smaller and 
more rounded mitochondria (Fig. 2k, Supplementary Fig. 2f). No 
changes in the content of ER was observed in the same experiments 
using two IRE1α null cell systems, whereas small alterations in ER 
complexity were detected in CRISPR KO cells (Supplementary 
Table 1). We complemented these experiments with live imaging of 

the ER marker KDEL–red fluorescent protein (RFP). This approach 
confirmed that the mean branch length of the ER was normal in 
IRE1α null cells, whereas the ER branch complexity (reflected by 
triple ER junctions) was slightly reduced (Supplementary Fig. 2g). 
Next, we assessed the shape of mitochondrial cristae using TEM 
because this morphological parameter correlates with mitochon-
drial respiration status33. We observed that IRE1α null cells exhibit 
an increased width of cristae (Supplementary Fig. 2h,i).

We then investigated the impact of IRE1α deficiency on MAM 
content. Increased colocalization between the ER marker ERp72 and 
the mitochondrial protein TOM20 was detected in IRE1α-deficient 
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cells (Fig. 2l). We confirmed these observations using TEM by 
applying two strategies to quantify MAM morphometry (Fig. 2m, 
Supplementary Fig. 2j,k, Supplementary Table 2). These results sug-
gest the presence of compensatory changes that balance the reduc-
tion in mitochondrial calcium uptake that is generated after the 
ablation of IRE1α expression. Thus, IRE1α expression contributes 
to maintaining mitochondrial function in resting conditions.

IRE1α expression is required to increase metabolism in response 
to ER stress. As IRE1α is a central component of the UPR, we 
investigated its contribution to metabolic control under ER stress. 
We confirmed the occurrence of a transient burst in ATP produc-
tion during early responses to ER stress34 (Supplementary Fig. 3a). 
However, this increase was almost absent in IRE1α-deficient cells 
(Supplementary Fig. 3a). Furthermore, ER stress stimulated an 
increase in the phosphorylation of AMPK over time (Supplementary 
Fig. 3b,c). By contrast, levels of phosphorylated AMPK (pAMPK) in 
IRE1α null cells were relatively high at basal ER stress levels and 
were insensitive to increases in ER stress (Supplementary Fig. 3b,c).

We then monitored whether the presence of IRE1α at MAMs 
was modulated by ER stress. Subcellular fractionation experiments 
did not indicate clear changes in the amount of IRE1α that was pres-
ent at MAMs (Supplementary Fig. 3d). Quantitative colocalization 
of IRE1α–HA with either TOM20 or the MAM mask (correspond-
ing to the overlap of ERp72 and TOM20) confirmed the presence 
of IRE1α at ER–mitochondria juxtapositions (Supplementary Fig. 
3e). Treatment of cells with tunicamycin led to a slight enrich-
ment of IRE1α at MAMs only after prolonged treatments (16 h; 
Supplementary Fig. 3e). These experiments suggest that the expres-
sion of IRE1α may also influence mitochondrial bioenergetics in the 
context of ER stress.

IRE1α controls the presence of InsP3R at MAMs. We then stud-
ied the abundance of InsP3Rs in purified MAMs and observed a 
large reduction in IRE1α-deficient MEFs (Fig. 3a). Importantly, 
the total amount of InsP3Rs present in the input or the ER fraction 
remained unchanged when IRE1α expression was ablated (Fig. 1g, 
Supplementary Figs. 1f and 3f). We then evaluated the levels of 
InsP3Rs at ER–mitochondria juxtapositions using an in situ prox-
imity ligation assay (PLA), a method that detects the presence of 
proteins within a range of 40 nm. Analysis of the proximity between 
VDAC1 and InsP3R1 or InsP3R3 indicated a strong reduction in PLA 
signals in IRE1α-deficient cells (Fig. 3b,c). Thus, our results suggest 
that IRE1α expression is necessary to locate InsP3Rs at MAMs.

Previous reports suggested that the distance between the ER and 
mitochondrial membrane is tightly controlled to allow the localiza-
tion of InsP3R to MAMs35, whereas greater distances impair calcium 
transfer into the mitochondrial matrix36. Analysis of the separation 
between the ER and the outer mitochondrial membrane using TEM 
revealed a narrower cleft in IRE1α-deficient cells (Fig. 3d,e). We 
validated these observations using a split green fluorescent protein-
based contact site sensor (SPLICSL) that was designed to detect wide 
MAM contacts37 (40–50 nm; Fig. 3f). We then expressed an artifi-
cial tether in IRE1α null cells to increase the separation between 
these organelles using a linker with nine tandem repeats (9xL), 
an approach that increased the cleft distance between the ER and 
the mitochondrial membrane (Fig. 3g, Supplementary Fig. 3g). 
However, this strategy did not recover the amount of InsP3R1 at 
MAMs that was measured using PLA (Fig. 3h).

IRE1α physically interacts with InsP3R and controls mitochon-
drial calcium uptake independent of IRE1α enzymatic activity. 
Next, we investigated whether the activities of IRE1α that are classi-
cally linked to the UPR are involved in the regulation of mitochon-
drial calcium uptake. We stably expressed different IRE1α mutants 
in IRE1α null cells including (1) an N-terminal deletion construct 

spanning the ER luminal domain (IRE1α-ΔN); (2) a C-terminal 
deletion mutant of the entire cytosolic region (IRE1α-ΔC); and 
(3) a non-dimerizing version (IRE1α-D123P) that is inactive and 
monomeric (Supplementary Fig. 4a). Functional evaluation of 
these mutants in calcium flux assays suggested that the C-terminal 
region of IRE1α enhances InsP3R activity, most probably through 
its monomeric inactive state (Supplementary Fig. 4b). We tested an 
additional mutation that affects the linker sequence (IRE1α-P830L), 
which lacks RNase and kinase functions38 (Fig. 4a, Supplementary 
Fig. 4c). Notably, analysis of calcium transfer from the ER to the 
mitochondria indicated that the expression of IRE1α-P830L 
restored normal mitochondrial calcium uptake, similar to the wild-
type construct (Fig. 4b) despite impaired XBP1 mRNA splicing 
(Fig. 4a). These results suggest that the function of IRE1α in mito-
chondrial calcium transfer can be separated from its canonical role 
as a UPR signal transducer.

To explore the possible function of IRE1α as a scaffold that 
may dock the InsP3R at MAMs, we tested the physical association 
between the two proteins. Immunoprecipitation experiments in 
HEK293T cells indicated a positive interaction between the pro-
teins (Fig. 4c,d), which was fully ablated by deleting the cytosolic 
domain of IRE1α (Fig. 4e, Supplementary Fig. 4d). By contrast, the 
IRE1α-P830L and IRE1α-D123P mutants retained their ability to 
associate with InsP3R1 (Supplementary Fig. 4e). The formation of a 
protein complex between IRE1α–HA and endogenous InsP3R1 was 
also validated in MEFs (Fig. 4f). We also performed PLA experi-
ments and confirmed the close proximity between IRE1α–HA and 
InsP3Rs in MEFs (Fig. 4g, Supplementary Fig. 4f).

We then purified recombinant fragments of the InsP3R1 cyto-
solic domain as glutathione S-transferase (GST)-fusion proteins in 
bacteria to evaluate their binding to recombinant IRE1α-ΔN. Pull-
down experiments revealed a tight association between IRE1α and 
domain 1 of InsP3R1, as well as a weaker association with domain 3 
(Fig. 4h). Domain 1 is important for InsP3R function, regulating its 
gating in response to InsP3 (refs. 39,40). Taken together, these experi-
ments suggest that IRE1α controls mitochondrial calcium uptake 
independently of its enzymatic activities, and it is associated with 
the formation of a stable complex with InsP3Rs at basal levels.

Enforced expression of InsP3Rs rescues mitochondrial calcium 
uptake and ATP levels in IRE1α-deficient cells. As the amount of 
InsP3Rs present in MAMs was reduced in IRE1α-deficient MEFs, we 
investigated whether the defects in mitochondrial function could 
be reverted by overexpressing InsP3Rs. We stably transduced IRE1α 
KO cells with CRISPR activator (CRa) lentiviral particles to enhance 
the transcription of the endogenous InsP3R1 gene (CRa-InsP3R1; 
Fig. 5a,b). This approach augmented the presence of InsP3R1 
at MAMs in IRE1α null cells, as monitored using PLA (Fig. 5b), 
increasing mitochondrial calcium uptake (Fig. 5c). Similar results 
were obtained when we evaluated ER–mitochondrial coupling by 
determining the correlation between cytosolic and mitochondrial 
calcium (Supplementary Fig. 5a). Consistent with these results, 
the mitochondrial membrane potential was increased in IRE1α-
deficient cells on CRa-InsP3R1 expression (Fig. 5e), whereas AMPK 
phosphorylation was attenuated (Fig. 5f). Furthermore, CRa-
InsP3R1 expression augmented steady-state ATP levels in IRE1α 
null cells (Fig. 5g). We complemented these experiments by gener-
ating CRa cells for InsP3R3 (Fig. 5g) in which we observed improved 
levels of InsP3R3 at MAMs (Supplementary Fig. 5b), increased ER–
mitochondrial calcium transfer (Fig. 5h) and augmented basal ATP 
levels (Fig. 5i). Together, these results support a major role for the 
dysregulation of InsP3R subtypes as a cause of mitochondrial physi-
ology alterations generated by IRE1α deficiency.

IRE1α expression determines the presence of InsP3R at MAMs 
in  vivo. To define the importance of IRE1α expression on MAM 
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in Supplementary Table 6.

Nature Cell Biology | www.nature.com/naturecellbiology

http://www.nature.com/naturecellbiology


ArticlesNature Cell Biology

biology in vivo, we determined the consequences of genetically dis-
rupting IRE1α in the mouse liver. We conditionally deleted Ern1 
(the gene that encodes IRE1α) using the Mx-Cre system, which is 
induced by an intraperitoneal injection of polyinosinic:polycytidylic 
acid (poly:IC) to ablate the target gene in the liver, and other tis-
sues, of adult animals41. We used two independent floxed mouse 
strains that generate deletion mutants that flank the RNase domain 
(Ern1ΔR)42 or the kinase domain (Ern1ΔK)43 of IRE1α. A full impair-
ment in the ability of IRE1α to induce XBP1 mRNA splicing was 
observed under experimental ER stress in both of these mouse 
models (Fig. 6a, Supplementary Fig. 6a). To evaluate the integrity 
of MAMs in Ern1ΔK livers, we performed TEM studies to determine 
morphological parameters (Fig. 6b). An analysis of the content of 
MAMs and mitochondrial morphology indicated that mitochon-
dria were smaller and showed a reduction in the distance between 
the ER and mitochondrial membrane (Fig. 6c,d). However, no dif-

ferences in the length of MAMs or the circularity of mitochondria 
were observed (Fig. 6e,f).

Next, we determined the influence of IRE1α expression on the 
overall composition of MAMs by means of quantitative proteomics 
of purified subcellular fractions that we obtained from Ern1 and 
Ern1ΔK livers (Supplementary Fig. 6b). This unbiased approach 
identified the presence of 1,466 proteins in MAMs (Supplementary 
Table 3). This set of proteins greatly overlapped with a recent pro-
teomic analysis of MAMs that were purified from mouse liver44 
and brain45 (Supplementary Fig. 6b). We analysed the intersec-
tion between these three data sets (197 common proteins) with 
other hits obtained from the literature as canonical MAM proteins  
(19 proteins; Supplementary Table 4), resulting in a consensus of 
216 MAMs proteins. A comparison of the MAM proteome between 
Ern1ΔK and control livers indicated a significant reduction in the 
levels of InsP3R1 in IRE1α mutant tissue, whereas InsP3R3 was 
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absent (Fig. 6g, Supplementary Table 3). Furthermore, we identi-
fied selective alterations in consensus MAM proteins, including 
changes in Tmed10, Aldh1l1, Apoc1 and Mccc2, whereas other 
canonical MAM markers such as calnexin, Sig-1R or VDAC1–3 
remained unaltered (Fig. 6g,h; global data set and intersections in 
Supplementary Tables 3 and 4). Western blot analysis confirmed a 
robust reduction in the levels of InsP3R1 in isolated MAM fractions 
(Fig. 6j), whereas InsP3R1 expression in total liver extracts and ER 
fractions was comparable between both genotypes (Supplementary 
Fig. 6c,d). Interestingly, an analysis of protein levels in the fractions 
suggested that Ern1ΔK livers have a reduced quantity of MAM pro-
teins but not mitochondrial proteins (Fig. 6k). Finally, an assessment 
of the possible interaction between IRE1αΔK and InsP3R1 that used 
liver extracts revealed reduced coimmunoprecipitation (Fig. 6l).  
In contrast, analysis of liver samples from Ern1ΔR mice showed no 
influence on the presence of InsP3R1 in MAM-enriched fractions 
(Supplementary Fig. 6e). Taken together, these results suggest that 
IRE1α controls the composition of MAMs in  vivo independently 
from its function as an ER stress transducer, because both KO 
models are deficient for UPR signalling but only IRE1αΔK affected 
InsP3R1 distribution.

IRE1α deficiency alters mitochondrial metabolism in vivo. To 
determine the consequences of IRE1α deficiency for global metab-
olism, we performed quantitative metabolomics of liver samples 
from both Ern1ΔK and Ern1ΔR mice. Among a total of 262 defined 
metabolites, our analysis retrieved 46 and 42 altered metabolites 
in Ern1ΔK and Ern1ΔR in mouse liver, respectively. We found only 
15 metabolites that showed differences in both animal models 
(Supplementary Fig. 7a–c, Supplementary Table 5). A heat map 
and pathway analysis of the 31 metabolites that were specifically 
altered in Ern1ΔK livers revealed clear perturbations to the TCA, 
glyoxylate and dicarboxylate metabolic pathways (Fig. 7a–c). An 
analysis of the TCA pathway in Ern1ΔK livers indicated an accumu-
lation of malate, fumarate, and citrate and isocitrate. Furthermore, 
we observed a reduction in the succinyl-CoA/succinate ratio 
(Fig. 7d), which might reflect a lower activity of isocitrate and 
α-ketoglutarate dehydrogenases, two enzymes that are regulated 
by calcium46. We also observed an increase in lactic acid in Ern1ΔK 
livers, suggesting that a defect in the TCA cycle might be compen-
sated by increasing glycolysis to maintain energetic homeostasis 
(Supplementary Fig. 7d). An analysis of ATP and reactive oxygen 
species (ROS; as a measure of electron chain transport activity) 
in liver homogenates and isolated mitochondria indicated compa-
rable levels in Ern1ΔK and littermate controls (Supplementary Fig. 
7e,f), suggesting that the disruption of cellular organization was 
sufficient to ablate the effects of IRE1α expression on mitochon-
drial physiology.

Finally, due to the fact that the integrity of MAMs has been 
linked to the adjustment of glucose homeostasis, insulin signalling 
and obesity47,48, we performed a glucose tolerance test in Ern1ΔK 
mice. Ern1ΔK animals presented reduced glucose clearance, suggest-
ing deregulated energy control (Fig. 7f). Overall, our results indi-
cate that IRE1α expression impacts global metabolism, an activity 
that can be dissociated from its canonical role as a UPR mediator.

Discussion
The control of cellular proteostasis and bioenergetics have his-
torically been studied as separate processes. As many metabolic 
pathways are regulated at the ER, coordinated action with the 
mitochondria—the powerhouse of the cell—is tightly controlled 
to adjust energetic requirements according to need. Although the 
UPR has classically been linked to ER stress, increasing evidence 
suggests that the pathway has alternative functions in various cellu-
lar processes beyond secretory pathway surveillance49. The concept 
of the ‘UPRosome’ has emerged50, in which UPR signal transducers 

are viewed as platforms where distinct components assemble in a 
tissue-specific manner to integrate cellular physiology. This model 
prompted us to explore the importance of the abundance of IRE1α 
that is present at MAMs in calcium signalling and mitochondrial 
homeostasis.

Here we uncovered a contribution of IRE1α to the maintenance 
of MAM composition and function—the fine-tuning of mitochon-
drial respiration—at resting conditions. As a molecular intersec-
tion, IRE1α regulates the biology of InsP3Rs at different levels by 
influencing their localization at MAMs and their channel activity, 
which correlates with the formation of a protein complex between 
IRE1α and InsP3Rs. Our genetic strategies unequivocally sepa-
rated the effects that IRE1α exerts on ER–mitochondrial interac-
tions from the known function of IRE1α in the UPR. We propose a 
model in which IRE1α operates as a scaffold that stabilizes InsP3Rs 
at MAMs (Fig. 7g). We speculate that the physical interaction of 
IRE1α with InsP3Rs may contribute to its docking at the MAM 
compartment and might allosterically modulate its activity, because 
domain 1 of the InsP3Rs is sensitive to InsP3 and contains a calcium-
binding site40

.
Calcium uptake into the mitochondrial matrix boosts oxidative 

phosphorylation as a cofactor of several metabolic enzymes of the 
TCA cycle46. The reduction in the rate of mitochondrial calcium 
uptake reported here in IRE1α KO MEFs might translate into a 
drop in ATP levels, engaging adaptive mechanisms to sustain cell 
survival, including the energy sensor AMPK, and the induction of 
catabolic processes such as autophagy. As IRE1α deficiency affected 
the expression of proteins related to phospholipid biosynthesis and 
metabolic enzymes at MAMs, the effects on energy metabolism and 
mitochondrial morphology described here cannot be exclusively 
limited to the consequences of IRE1α expression on the subcellular 
redistribution of InsP3R. Overall, this study suggests that IRE1α has 
a housekeeping role in mediating ER-to-mitochondrion communi-
cation in the absence of ER stress.

The intersection of the UPR with inflammation, lipid metabo-
lism, calcium homeostasis and energy control pathways is emerging 
as a major factor underlying metabolic diseases such as type 2 diabe-
tes, insulin resistance and obesity51. Thus, components of the UPR 
machinery represent interesting targets to adjust energy metabolism 
and proteostasis control in a disease context. Interestingly, recent 
reports suggested that XBP1s regulates InsP3R expression52, and 
also influences the influx of glutamine in T cells, having a negative 
effect on mitochondrial respiration53, and suggesting that under ER 
stress multiple bioenergetics pathways could be fine-tuned down-
stream of IRE1α. Our results may have implications for metabolic 
syndromes and other pathological states that are linked to dysfunc-
tional MAMs, including neurodegenerative diseases, immune dis-
orders and cancer. It is conceivable that therapeutic interventions 
that target classical UPR signal transducers could affect cellular out-
puts well beyond proteostasis.
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Methods
Cell culture, cell lines and DNA constructs. All MEFs or HEK293 cells were 
maintained in DMEM medium that was supplemented with 5% fetal bovine 
serum (FBS) and non-essential amino acids, and grown at 37 °C with 5% CO2. 
IRE1α-deficient cells were described previously54. The production of amphotropic 
retroviruses using the HEK293 cell line was performed using standard methods55. 
IRE1α-deficient MEFs that were stably transduced with retroviral expression 
vectors for IRE1α–HA, IRE1α-D123P–HA, IRE1α-P830L–HA, IRE1α-ΔC–
HA, IRE1α-ΔN–HA or an empty vector-expressing retrovirus were described 
previously38,56. In these constructs, IRE1α contains two tandem HA sequences at 
the C-terminal domain and a precision enzyme site before the HA tag. The control 
and 9xL linkers were provided by G. Hajnoczky. Alternatively, we generated 
CRISPR cells using a double nickase that was targeted to IRE1α or scrambled 
as a control (sc-429758-NIC and sc-437281; Santa Cruz). Two different sets of 
clones were prepared and a minimum of four clones (control and IRE1α, for each 
set) were screened for XBP1 mRNA splicing and the upregulation of BIP and 
CHOP (after experimental ER stress). CRISPR activation lentiviral particles that 
targeted InsP3R1 and InsP3R3 were generated in IRE1α KO cell lines following the 
manufacturer’s instructions (sc-421192-LAC, sc-421194-LAC and sc-437282; Santa 
Cruz). All cell lines generated in this study, except for CRISPR KO cell lines, were 
pooled populations to avoid clonal effects.

Subcellular fractionation of MAMs and proteomic analysis. Cellular or liver 
subcellular fractionation was performed by strictly following a previously reported 
protocol22 with a variation consisting of the addition of an extra 15% Percoll 
gradient on top of the 30%. In brief, samples were washed and dounced in a 
stainless-steel Dura-Grind dounce tissue grinder (Wheaton). Cellular integrity 
was evaluated every five strokes after trypan blue staining. The homogenate 
was centrifuged two times at 640g to remove unbroken cells and nuclei. The 
supernatant was centrifuged twice at 9,000g to pellet liver crude mitochondria and 
twice at 7,000g and once at 10,000g for cells. The supernatant was centrifuged at 
20,000g for 30 min, after which the obtained supernatant was further centrifuged 
at 100,000g to give a supernatant (cytosol) and a pellet (ER). Crude mitochondria 
were centrifuged 95,000g for 30 min on the top of a Percoll gradient (15–30%) to 
obtain MAMs (interphase) and the pure mitochondrial fraction (pellet). MAMs 
were pelleted after centrifugation at 100,000g for 1 h.

MAM lysates were washed by chloroform/methanol precipitation. Air-
dried pellets were resuspended in 1% RapiGest SF (Waters) and brought up in 
100 mM HEPES (pH 8.0). Proteins were reduced using 5 mM Tris(2-carboxyethyl)
phosphine hydrochloride (Thermo Fisher) for 30 min and alkylated with 10 mM 
iodoacetamide (Sigma-Aldrich) for 30 min at room temperature and protected 
from light. Proteins were digested for 18 h at 37 °C using 3 μg trypsin (Promega). 
After digestion, a 20 µg aliquot of peptides from each sample was reacted for 1 h 
with the appropriate TMT-NHS isobaric reagent (Thermo Fisher) in 40% (v/v) 
anhydrous acetonitrile and quenched with 0.4% NH4HCO3 for 1 h. Samples 
with different TMT labels were then pooled and acidified using 5% formic 
acid. Acetonitrile was evaporated on a SpeedVac and debris was removed by 
centrifugation for 30 min at 18,000g. Multi-Dimensional Protein Identification 
Technology (MuDPIT) microcolumns were prepared as described57. Liquid 
chromatography-mass spectrometry LC–MS analysis was performed using a Q 
Exactive mass spectrometer equipped with an EASY nLC 1000 (Thermo Fisher). 
MuDPIT experiments were performed by 5 min sequential injections of 0, 20, 50, 
80 and 100% of buffer C (500 mM ammonium acetate in buffer A (95% water, 5% 
acetonitrile, 0.1% formic acid)) and a final step of 90% buffer C and 10% buffer B 
(20% water, 80% acetonitrile, 0.1% formic acid, v/v/v) and each step was followed 
by a gradient from buffer A to buffer B. Electrospray was performed directly 
from the analytical column by applying a voltage of 2.5 kV with an inlet capillary 
temperature of 275 °C. Data-dependent acquisition of MS spectra was performed 
using the following settings: eluted peptides were scanned from 400 to 1,800 m/z 
with a resolution of 30,000 and the mass spectrometer was set in a data-dependent 
acquisition mode. The top ten peaks for each full scan were fragmented by higher 
energy collisional dissociation (HCD) using a normalized collision energy of 30%, 
a 100 ms activation time, a resolution of 7,500 and scanned from 100 to 1,800 m/z. 
Dynamic exclusion parameters were 1 repeat count, 30 ms repeat duration, 500 
exclusion list size, 120 s exclusion duration, and exclusion width between 0.51 and 
1.51. Peptide identification and protein quantification was performed using the 
Integrated Proteomics Pipeline Suite (IP2, Integrated Proteomics Applications Inc.) 
as previously described57.

RNA isolation and PCR. Semi-quantitative PCR primers for the Xbp1 
mRNA splicing were as follows: 5′-AAGAACACGCTTGGGAATGG-3′ and 
5′-CTGCACCTGCTGCGGAC-3′. The full description of this assay was described 
previously23.

Western blot analysis. Cells were collected and homogenized in RIPA buffer 
(20 mM Tris pH 8.0, 150 mM NaCl, 0.1% sodium dodecyl sulphate (SDS), 0.5% 
Triton X-100) containing a protease inhibitor cocktail (Roche) in the presence 
of 50 mM NaF and 1 mM Na3VO4. Protein concentration was determined by 
micro-BCA assay (Pierce), and 50–100 µg of total protein was loaded onto 

SDS–polyacrylamide gel electrophoresis mini gels (Bio-Rad Laboratories) before 
transfer onto polyvinylidene difluoride (PVDF) membranes. Membranes were 
blocked using PBS, 0.02% Tween-20, 5% milk for 1 h at room temperature, then 
probed with primary antibodies. The following antibodies were used: anti-HSP90 
(sc-13119, Santa-Cruz), anti-HA (715500, Invitrogen), anti-PERK (3192, CST), 
anti-VDAC1 (4866, CST), anti-InsP3R1 (home-made antibody; Rbt0358); anti-
InsP3R3 (610313, BD-Biosciences), anti-MCU (sc-246071, Santa-Cruz), anti-
SERCA2b (gift from P. Vangheluwe and F. Wuytack, K.U. Leuven)59, anti-calnexin 
(SPA-860, Stressgene), anti-ECT complex (MS601/F1208, Mitosciences), anti-
cytochrome c (ab110325, Abcam), anti-LC3B (2775S, CST), anti-actin (8691001, 
MP-Biomedicals), anti-pAMPK (2535, CST), anti-total AMPK (5832, CST), 
anti-γ-tubulin (sc-10732, Santa-Cruz), anti-GAPDH (sc-365062, Santa-Cruz) 
and anti-IRE1α (sc-20790, Santa-Cruz; and/or 3294, CST). Bound antibodies 
were detected using peroxidase-coupled secondary antibodies and the enhanced 
chemiluminescence (ECL) system.

Immunofluorescence, Duolink, SPLICS and TEM. For immunofluorescence and 
Duolink experiments, cells were seeded on 12 mm cover slips. After the indicated 
transfections and treatments, cells were fixed for 20 min at room temperature using 
4% paraformaldehyde and then permeabilized using 0.5% NP-40 in PBS containing 
0.5% bovine serum albumin (BSA) for 10 min. After blocking for 1 h using 10% FBS 
in PBS containing 0.5% BSA, cells were incubated with the indicated antibodies 
(also for PLA) anti-HA (901514, Biolegend or 9110, Abcam), anti-InsP3R1 (ab5804, 
Abcam), anti-VDAC1 (ab14734, Abcam), anti-InsP3R3 (610313, BD-Biosciences), 
anti-TOM20 (ab56783, Abcam), anti-ERp72 (SPS-720, Stressgene) or anti-LC3B 
(2775S, CST) overnight at 4 °C followed by either staining with Alexa-conjugated 
secondary antibodies (Molecular Probes) or following Duolink manufacturer’s 
instructions as previously described (Duolink, Sigma-Aldrich)23. SPLICSL was 
transfected as previously described37. In brief, a 1:1 ratio for the OMM-GFP and 
ER-Long plasmid was used to visualize long MAM contacts (ranging from 40 to 
50 nm). Images were acquired by confocal microscopy (Nikon C2 plus) using a 
×60 oil objective lens. Images were stacked every 0.5 µm to cover all of the area of 
interest. Stacked images were deconvoluted using Huygens and ImageJ. Stacked 
deconvolved images were reduced to one dimension using the sumslices function 
(ImageJ). Colocalization was performed in thresholded images, and masked images 
were used to calculate Mander’s/Pearson’s index using ImageJ/NIS-elements. For 
SPLICSL, convolved stacks were used to count objects from thresholded images in 
the three-dimensionally rendered image.

For TEM analysis, MEFs (control linker and 9xL were sorted for RFP) or liver 
samples (pre-perfused with PBS) were fixed 2 h using 2.5% glutaraldehyde, 0.01% 
picric acid and 0.1 M cacodylate buffer, pH 7.4. Samples were incubated in the 
same buffer with 1% OsO4 for 1 h and then immersed in 2% uranyl acetate for 
2 h, dehydrated in a gradient of ethanol and propylene oxide, and infiltrated in 
Epon (Ted Pella). Ultrathin sections were contrasted with 1% uranyl acetate and 
lead citrate. Grids were examined using a Philips Tecnai 12 electron microscope 
operated at 80 kV. TEM analysis was performed double blinded using ImageJ 
software. The analysis of MAM width was performed at a 40,000× amplification. 
MAMs with a maximal length (distance between membranes) of less than 30 nm 
were considered for study using TEM36.

Calcium imaging, ER dynamics and mitochondrial membrane potential. 
Cytosolic calcium signals were determined in MEFs loaded with 2.5 µM Fura2 
(20 min at room temperature). Cytosolic [Ca2+] increases are presented as the ratio 
of emitted fluorescence (510 nm) after excitation at 340 nm and 405 nm relative 
to the ratio measured before cell stimulation (Fura2 ratio 340/405). Simultaneous 
cytosolic and mitochondrial measurements were accomplished by loading 
cells with 1 µM Rhod2 for 30 min at 37 °C in 5% CO2 before Fura2 incubation. 
Mitochondrial calcium increases are presented as the emitted fluorescence at 
620 nm after stimulation with 560 nm, data were normalized to fluorescence levels 
before cell stimulation. Mitochondrial calcium entry was measured by transiently 
transfecting the CEPIA2mt calcium probe25 and by exciting cells at 480 nm and 
recording emission at 525 nm. Mitochondrial membrane potential was measured 
by loading cells with 10 nM TMRM for 30 min at 37 °C 5% CO2. Excitation at 
525 nm and emission at 630 nm retrieved fluorescence intensity, indicative of 
mitochondrial voltage. ER dynamics were studied by transiently expressing KDEL–
RFP in CRIPSR IRE1α-deficient cells. ER junctions and branching were evaluated 
as previously described60.

Live imaging was carried out at room temperature using an Olympus 
IX81 inverted spinning microscope. Cells were incubated/bathed in a solution 
containing 140 mM NaCl, 5 mM KCl, 1.2 mM CaCl2, 0.5 mM MgCl2, 5 mM 
glucose, 10 mM HEPES (300 mosmol l−1, pH 7.4 with Tris). Ca2+-free solutions were 
obtained by replacing CaCl2 with an equal amount of MgCl2 plus 0.5 mM EGTA.

InsP3R activity was studied as previously described61. Cells were loaded with 
20 µM Mag-Fluo4-AM in HEPES-buffered saline (135 mM NaCl, 5.9 mM KCl, 
11.6 mM HEPES, 1.5 mM CaCl2, 11.5 mM glucose, 1.2 mM MgCl2, pH 7.4) with 
1 mg ml−1 of BSA and 0.2 mg ml−1 of Pluronic F127 (Invitrogen). After 60 min, 
cells were permeabilized for 15 min in calcium-free cytosol-like medium (140 mM 
KCl, 20 mM NaCl, 1 mM EGTA, 2 mM MgCl2, 20 mM Pipes, pH 7.0) containing 
10 µg ml−1 of saponin. Subsequently, cells were resuspended in a cytosol-like 
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medium without Mg+2, supplemented with 10 µM FCCP and 220 nM free calcium. 
ER calcium loading was accomplished by adding 1.5 mM Mg-ATP. On maximal 
loading, 3 µM InsP3 or 1 µM ionomycin (to induce the maximal response) were 
added to the cells. Results were calculated as Fx − F200 of fluorescence emission at 
525 nm after excitation at 490 nm. Percentage of response was calculated for every 
experiment compared to its ionomycin induced maximal release. Fluorescence was 
measured using a 96-well microplate reader with automated fluid additions at 37 °C 
(FlexStation 3, Molecular Devices).

Unidirectional 45Ca2+ fluxes were performed in 12-well clusters on confluent 
monolayers of MEFs 5 d after plating the cells at 10,000–15,000 cells per well. 
The chemical composition of the permeabilization, loading and efflux media 
were described previously62. Cells were permealized using 20 μg ml−1 saponin 
for 10 min. Non-mitochondrial Ca2+ stores were loaded with 150 nM free 
Ca2+, a mixture of 40Ca2+ and 45Ca2+ (final specific activity of 0.3 MBq ml−1). To 
determine ER 45Ca2+ uptake, loading was carried out at 30 °C for 5–10 min and 
for 45 min (to obtain steady-state levels) in the presence of 10 mM NaN3 with or 
without 500 nM thapsigargin. Afterwards, cells were washed twice with efflux 
medium supplemented with thapsigargin. The 45Ca2+ amount in the stores was 
released by adding 2% SDS for 30 min. This amount of 45Ca2+, expressed in 
counters per minute A (CPMA), was then divided by the number of cells per 
well, as counted by the Invitrogen Countess II FL Automated Cell Counter. 
To assess the passive 45Ca2+ leak from the ER, 45Ca2+ loading was carried out 
for 45 min, then halted by two washes with efflux medium supplemented with 
thapsigargin. Next, efflux medium was provided and collected every 2 min (up 
to 18 min after initial collection) from each well. At the end of the experiment, 
2% SDS was used to determine the remnant 45Ca2+. This value was used to 
calculate the ER 45Ca2+ content over time by adding it in retrograde order to the 
radioactivity collected during the successive time intervals.

Immunoprecipitation and pull-down assays. Liver homogenates, transiently 
transfected HEK293 cells or indicated MEFs stably were prepared in lysis buffer 
(0.5% NP-40, 250 mM NaCl, 30 mM Tris, 0.5% glycerol, pH 7.4, 50 mM NaF, 1 mM 
Na3VO4, 250 mM phenylmethylsulfonyl fluoride (PMSF) and protease inhibitors). 
To immunoprecipitate HA-tagged IRE1α or endogenous IRE1α protein, extracts 
were incubated with rat anti-HA (Roche) or anti-IRE1α (sc-20790, Santa Cruz) 
antibodies overnight at 4 °C under rotation, and then 30 µl of prewashed magnetic 
beads (1614013, Biorad) was added for 3 h at 4 °C. Beads were subsequently washed 
twice for 5 min with 1 ml of lysis buffer at 4 °C and then once in lysis buffer with 
500 mM NaCl. Protein complexes were eluted by heating at 95 °C for 5 min in 
loading buffer with 100 mM dithiothreitol (DTT).

For GST pull-down experiments, GST-fusion constructs of different domains 
of InsP3R1 were transformed into Escherichia coli BL21 (DE3) and induced 
with 0.1–1 mM isopropyl-β-d-thigalactopyranoside for 3–6 h and subsequently 
purified using glutathione sepharose beads (Thermo Scientific). For binding 
assays, 4 μg of different GST-tagged InsP3R1 domains was incubated with 
approximately 4 μg of cytoplasmic domain of GST-tagged IRE1α for 6 h at 4 °C 
on an end-to-end rotor in binding buffer containing 0.2% Triton X-100, 50 mM 
Tris-Cl (pH 7.5), 100 mM NaCl, 15 mM EGTA, 1 mM DTT and 1 mM PMSF. 
The mixture was then centrifuged at 500g for 4 min and the supernatant was 
discarded. Beads were then washed four times with washing buffer (0.5% Triton 
X-100, 50 mM Tris-Cl (pH 7.5), 100 mM NaCl, 15 mM EGTA, 1 mM DTT and 
1 mM PMSF), and then the bound protein complexes were boiled in SDS sample 
buffer (containing guanidine hydrochloride) at 95 °C for 5 min and subsequently 
analysed by western blot.

ATP determination and mitochondrial respiration. Oxygen consumption 
rates were assessed using a Seahorse XFe96 extracellular flux analyzer (Agilent 
Technologies) as previously described63. MEFs were seeded on XFe96-well 
plates 24–48 h before the experiment. Cells were placed in assay medium for 1 h 
(unbuffered DMEM supplemented with 1 mM glutamine, 10 mM glucose and 
1 mM pyruvate, pH 7.4). After recording baseline oxygen consumption rates, 
cells were challenged with 1 µM oligomycin, 500 nM FCCP and 1 μM rotenone/
antimycin A to reveal basal, maximal and ATP-coupled respiration. Whole-cell 
ATP levels were calculated in cells seeded 24–48 h before treatments. To measure 
ATP in tissues, isolated mitochondria or cells, we used a luciferase detection kit 
(A22066, Invitrogen) following the manufacturer’s instructions and normalized 
to protein levels. Cytosolic or mitochondrial ATP in single-cell live imaging 
was calculated using the FRET ratio from the indicated cell lines that were 
transfected with either cytosolic or mitochondria-tagged ATP probes28. Cells 
were imaged using a Leica SP5 microscope with a 453 nm laser, with an emission 
of 460–490 nm for CFP and 520–540 nm for YFP/FRET. Mitochondrial complex 
I and III activity was estimated through the evaluation of the ROS production 
in total or mitochondrial liver samples. ROS production was measured using 
25 µM CM-H2DCFDA (485 nm, 530 nm) with the Biotek Synergy HT plate reader 
as previously described64. Then, 25 µg of isolated mitochondria were added 
to 100 μl of KCl respiration buffer with 5 mM pyruvate and 2.5 mM malate as 
oxidative substrates at 37 °C. ROS production was calculated as the maximum 
dichlorofluorescein fluorescence following 30 min of incubation, expressed in 
arbitrary fluorescence units.

Animal studies. This study was carried following the strict recommendations 
in the Guide for the Care and Use of Laboratory Animals of the National 
Institutes of Health. Animal protocols were approved by the Committee on 
the Ethics of Animal Experiments of the University of Chile (number: 0833 
FMUCH). Mice were housed under a 12 h:12 h light:dark cycle with access 
to food and water ad libitum. Ern1 mutant mice, either RNase42 or kinase43 
were bred with Mx-Cre mice41. IRE1α deletion was achieved by injecting 
intraperitoneal 150 µg of poly:IC (Invivogen) three times every two days. Sex- 
and age-matched male and female mice ranging in age from two to six months 
were used for this study.

A glucose tolerance test was performed in eight-week-old male mice as 
reported48. Mice were starved overnight before being injected with 1.5 g kg−1 of 
glucose. Glucose levels were obtained from tail vein blood with one touch ultra-
strips (Johnson & Johnson). Mx-Cre-negative poly:IC-injected age-matched 
littermates were used in all experiments. All samples were included in analysis 
unless they fell more than two standard deviations from the mean.

Metabolomics studies. Metabolic studies were carried out in liver tissue samples as 
previously described65. About 30 mg of tissue for each condition was first weighted 
and solubilized into 1.5 ml polypropylene microcentrifuge tubes with ceramic 
beads using 1 ml of cold lysate buffer (methanol:water:chloroform, 9:1:1, −20 °C). 
They were then homogenized three times for 20 s at 5,500 r.p.m. using a Precellys 
24 tissue homogenizer (Bertin Technologies), followed by centrifugation (10 min 
at 15,000g, 4 °C). The upper phase of the supernatant was split into two parts: the 
first 150 µl was used for the gas chromatography coupled with mass spectrometry 
(GC–MS) using vial injection, the other 250 µl was used for the ultrahigh pressure 
liquid chromatography coupled with mass spectrometry (UHPLC–MS). The 
GC–MS aliquots (150 µl) were evaporated and dried, and 50 µL of methoxyamine 
(20 mg ml−1 in pyridine) was added, after which the aliquots were stored at room 
temperature in the dark for 16 h. The subsequent day, 80 µl of MSTFA was added 
and final derivatization was performed at 40 °C for 30 min. Samples were then 
directly injected into GC–MS. For the LC–MS aliquots, the collected supernatant 
was evaporated in microcentrifuge tubes at 40 °C in a pneumatically assisted 
concentrator (Techne DB3). The LC–MS dried extracts were solubilized with 
450 µl of MilliQ water and aliquoted in three microcentrifuge tubes (100 µl) for 
each LC method and one microcentrifuge tube for backup. Aliquots for analysis 
were transferred in LC vials and injected into UHPLC–MS or kept at −80 °C 
until injection. Afterwards, manual verification and quality control protocols 
were performed. An extended version of these methods is available on request, 
243 metabolites were obtained in total. Analysis of relevant pathways that were 
altered was obtained by analysing the significantly altered metabolites (comparing 
experimental groups) using MetaboAnalystR66.

Statistics and reproducibility. Results were statistically compared using the 
Kruskal–Wallis ANOVA for unpaired groups followed by multiple comparison post-
tests (Tukey multiple comparison test). Student’s t-tests were performed for unpaired 
or paired groups; one- or two-tailed experiments are indicated in each figure legend. 
Analysis was performed using GraphPad software. All experiments were performed 
at least three times independently and some blots were repeated at least twice.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Mass spectrometry data have been deposited in ProteomeXchange 
(PXD013313). Metabolomics data have been deposited as a Mendeley dataset at 
https://data.mendeley.com/ (https://doi.org/10.17632/dtdf7wk3mb.1). Source 
data for Figs. 1–7 and for Supplementary Figs. 1–4 and 7 have been provided 
in Supplementary Table 6. Source data for Fig. 6 and Supplementary Fig. 6 
have been provided in Supplementary Tables 3 and 4. Source data for Fig. 7 
and Supplementary Fig. 7 can be found in Supplementary Table 5. All data that 
support the findings of this study are available from the corresponding author 
on reasonable request.
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calculation was performed, describe how sample sizes were chosen and provide a rationale for why these sample sizes are sufficient.
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Field work, collection and transport
Field conditions Describe the study conditions for field work, providing relevant parameters (e.g. temperature, rainfall).
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Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used Western Blot: anti-HSP90 (Cat: sc-13119, Santa Cruz), anti-HA 1:1000 (Cat: 715500, Invitrogen), anti-PERK (Cat: 3192, Cell 

Signaling Technologies), VDAC1 (Cat: 4866, Cell Signaling Technologies), IP3R1 (homemade antibody; Rbt0361); IP3R3 (Cat: 
610313, BD Biosciences), MCU (Cat: sc-246071, Santa Cruz), SERCA2b (a kind gift from Dr. P. Vangheluwe and Dr. F. Wuytack, 
K.U. Leuven, Belgium)62, Calnexin (Cat: SPA-860, Stressgene), ECT complexIII-IV (Cat: MS601/F1208, Mitosciences), Cytochrome 
C (Cat: ab110325, Abcam), LC3B (Cat: 2775S, Cell Signaling Technologies), Actin (Cat:8691001, MP Biomedicals), phosphorylated 
AMPK (Cat: 2535, Cell Signaling Technologies), total AMPK (Cat: 5832, CST), γ-tubulin(Cat: sc-10732, Santa Cruz), GAPDH (Cat: 
sc-365062, Santa Cruz), and anti-IRE1α (Cat: sc-20790, Santa Cruz; and/or Cat: 3294,Cell Signaling Technologies). 
IF/PLA: anti-HA (Cat: 901514, Biolegend or Cat: 9110, Abcam), IP3R1 (Cat: ab5804Abcam), VDAC1 (Cat: ab14734, Abcam), IP3R3 
(Cat: 610313, BD-Biosciences) TOM20 (Cat: ab56783, Abcam), ERp72 (Cat: SPS-720, Stressgene), or LC3B (Cat: 2775S, CST).

Validation Specific validations were performed for the following antibodies with cell lines defienent for IRE1. anti-HA (Cat: 901514, 
Biolegend or Cat: 9110, Abcam), anti-HA 1:1000 (Cat: 715500, Invitrogen), anti-IRE1α (Cat: sc-20790, Santa Cruz; and/or Cat: 
3294,Cell Signaling Technologies). Figure 1, S1, 4, S4, 6 and S6 
IP3R1/3 enhanced expression cell lines validated the antibodies used.  IP3R1 (Cat: ab5804Abcam). IP3R3 (Cat: 610313, BD-
Biosciences). These cells were co-validated funcitonally (Figure 5) 
Antibodies used for microspcopy imaging presented same cellular patterns as expected by the manufacturer. i.e TOM20 was 
mitochondrial, ERp72, reticular and LC3B presented dots that were induced as predicted (TOM20 (Cat: ab56783, Abcam), ERp72 
(Cat: SPS-720, Stressgene), or LC3B (Cat: 2775S, CST)). 
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The rest of antibodies were used as descrbided by manufacturer's instrucitons and band specificity, when more than one was 
infered based on molecular weight.

Eukaryotic cell lines
Policy information about  cell lines 

Cell line source(s) IRE1 deficient MEF cells come form David Ron lab. The rest of the cell lines on this study were generated for this study, 
incuding CRISPR IRE1 deficient cells, MEF IRE1 Ko cells with enhanced IP3R1 or IP3R3 expression. 
HEK293T cells used in this study were obtained from ATCC. these were used to either generate virus as described in the 
methods seciton, or to test IRE1-IP3Rs interaction in transient transfection systems (Figure 4)

Authentication IRE1 alpha deficient cells either CRISPR or reconsitituted were tested by XBP1 splicing and by Western blot (Figure S1 A-C). 
IRE1 mutant stable cell lines (P830L, D123P,delta-N and delta C) were tested with splicing and western blot (present in the 
manuscript) and by DNA sequencing. 
MEF cells with CRISPR metiated activaiton of IP3R1 and IP3R3 were tested functionally and by Western blot (Figure 5) 

Mycoplasma contamination Cell lines used in this study tested negative for mycoplasma. Positive cell lines were treated or discarded as a regular basis.

Commonly misidentified lines
(See  ICLAC 

No commonly misidentified cell lines were used

Palaeontology
Specimen provenance Provide provenance information for specimens and describe permits that were obtained for the work (including the name of the 

issuing authority, the date of issue, and any identifying information).

Specimen deposition Indicate where the specimens have been deposited to permit free access by other researchers.

Dating methods If new dates are provided, describe how they were obtained (e.g. collection, storage, sample pretreatment and measurement), 
where they were obtained (i.e. lab name), the calibration program and the protocol for quality assurance OR state that no new 
dates are provided.

Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Animals and other organisms
Policy information about  studies involving animals   ARRIVE guidelines 

Laboratory animals Mice C57-B6 mice RNase or kinase floxed mice for ERN1 were bred with Mx-Cre to generate an inducible liver specific transgenic 
animals. IRE1α deletion was achieved by injecting intra peritoneal 150 μg of Poly:IC (Invivogen) three times every two days. Sex 
and age matched male and female mice ranging age from 2-6 months were used for this study except for glucose tolerance test 
where 8 week old male mice were used. 

Wild animals This study did not involve wild animals

Field-collected samples This study did not involve filed colected samples

Ethics oversight Animal protocols were approved by the Committee on the Ethics of Animal Experiments of the University of Chile (Nº: 0833 
FMUCH). 

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Human research participants
Policy information about  studies involving human research participants 

Population characteristics Describe the covariate-relevant population characteristics of the human research participants (e.g. age, gender, genotypic 
information, past and current diagnosis and treatment categories). If you filled out the behavioural & social sciences study design 
questions and have nothing to add here, write "See above."

Recruitment Describe how participants were recruited. Outline any potential self-selection bias or other biases that may be present and how 
these are likely to impact results.

Ethics oversight Identify the organization(s) that approved the study protocol.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Clinical data
Policy information about  clinical studies 
All manuscripts should comply with the ICMJE guidelines for publication of clinical research CONSORT checklist 

Clinical trial registration Provide the trial registration number from ClinicalTrials.gov or an equivalent agency.

Study protocol Note where the full trial protocol can be accessed OR if not available, explain why.

Data collection Describe the settings and locales of data collection, noting the time periods of recruitment and data collection.

Outcomes Describe how you pre-defined primary and secondary outcome measures and how you assessed these measures.

ChIP-seq
Data deposition

Confirm that both raw and final processed data have been deposited in a public database such as  GEO 

Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links 
May remain private before publication. 

For "Initial submission" or "Revised version" documents, provide reviewer access links.  For your "Final submission" document, 
provide a link to the deposited data.

Files in database submission Provide a list of all files available in the database submission.

Genome browser session  
(e.g.  UCSC 

Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to 
enable peer review.  Write "no longer applicable" for "Final submission" documents.

Methodology

Replicates Describe the experimental replicates, specifying number, type and replicate agreement.

Sequencing depth Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of 
reads and whether they were paired- or single-end.

Antibodies Describe the antibodies used for the ChIP-seq experiments; as applicable, provide supplier name, catalog number, clone 
name, and lot number.

Peak calling parameters Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and 
index files used.

Data quality Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold 
enrichment.

Software Describe the software used to collect and analyze the ChIP-seq data. For custom code that has been deposited into a 
community repository, provide accession details.

Flow Cytometry
Plots

Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Describe the sample preparation, detailing the biological source of the cells and any tissue processing steps used.

Instrument Identify the instrument used for data collection, specifying make and model number.

Software Describe the software used to collect and analyze the flow cytometry data. For custom code that has been deposited into a 
community repository, provide accession details.
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Cell population abundance Describe the abundance of the relevant cell populations within post-sort fractions, providing details on the purity of the samples 
and how it was determined.

Gating strategy Describe the gating strategy used for all relevant experiments, specifying the preliminary FSC/SSC gates of the starting cell 
population, indicating where boundaries between "positive" and "negative" staining cell populations are defined.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging
Experimental design

Design type Indicate task or resting state; event-related or block design.

Design specifications Specify the number of blocks, trials or experimental units per session and/or subject, and specify the length of each trial 
or block (if trials are blocked) and interval between trials.

Behavioral performance measures State number and/or type of variables recorded (e.g. correct button press, response time) and what statistics were used 
to establish that the subjects were performing the task as expected (e.g. mean, range, and/or standard deviation across 
subjects).

Acquisition

Imaging type(s) Specify: functional, structural, diffusion, perfusion.

Field strength Specify in Tesla

Sequence & imaging parameters Specify the pulse sequence type (gradient echo, spin echo, etc.), imaging type (EPI, spiral, etc.), field of view, matrix size, 
slice thickness, orientation and TE/TR/flip angle.

Area of acquisition This study did not involve wild animals

Diffusion MRI Used Not used

Preprocessing

Preprocessing software Provide detail on software version and revision number and on specific parameters (model/functions, brain extraction, 
segmentation, smoothing kernel size, etc.).

Normalization If data were normalized/standardized, describe the approach(es): specify linear or non-linear and define image types 
used for transformation OR indicate that data were not normalized and explain rationale for lack of normalization.

Normalization template Describe the template used for normalization/transformation, specifying subject space or group standardized space (e.g. 
original Talairach, MNI305, ICBM152) OR indicate that the data were not normalized.

Noise and artifact removal Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and 
physiological signals (heart rate, respiration).

Volume censoring Define your software and/or method and criteria for volume censoring, and state the extent of such censoring.

Statistical modeling & inference

Model type and settings Specify type (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first 
and second levels (e.g. fixed, random or mixed effects; drift or auto-correlation).

Effect(s) tested Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether 
ANOVA or factorial designs were used.

Specify type of analysis: Whole brain ROI-based Both

Statistic type for inference
(See  Eklund et al. 2016 

Specify voxel-wise or cluster-wise and report all relevant parameters for cluster-wise methods.

Correction Describe the type of correction and how it is obtained for multiple comparisons (e.g. FWE, FDR, permutation or Monte 
Carlo).
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Models & analysis

n/a Involved in the study
Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis

Functional and/or effective connectivity Report the measures of dependence used and the model details (e.g. Pearson correlation, partial 
correlation, mutual information).

Graph analysis Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph, 
subject- or group-level, and the global and/or node summaries used (e.g. clustering coefficient, efficiency, 
etc.).

Multivariate modeling and predictive analysis Specify independent variables, features extraction and dimension reduction, model, training and evaluation 
metrics.
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